From 1 - 10 / 13
  • In 2017, 21 new offshore petroleum exploration areas have been released. The majority of the areas are located along the North West Shelf spanning the Westralian Superbasin from the Bonaparte Basin in the north-east to the Northern Carnarvon Basin in the south-west. New areas have been released in offshore south-eastern Australia with new opportunities provided in the Otway, Bass and Gippsland basins. Two large areas in the northern Perth Basin, an offshore frontier, complete the 2017 Acreage Release. All Release Areas are supported by industry nominations and one new cash bid area has been offered in the Dampier Sub-basin. Geoscience Australia continues to support industry activities by acquiring, interpreting and integrating pre-competitive datasets that are made freely available as part of the agency’s regional petroleum geological studies. A new regional 2D seismic survey was acquired in the Houtman Sub-basin of the Perth Basin, forming the basis of the latest prospectivity study carried out by Geoscience Australia. The results of the study are presented in the technical program of the 2017 APPEA conference. A wealth of seismic and well data, submitted under the Offshore Petroleum and Greenhouse Gas Storage Act 2006 (OPGSSA) are made available through the National Offshore Petroleum Information Management System (NOPIMS). Additional datasets are accessible through Geoscience Australia’s data repository. Presented at the 2017 Australian Petroleum Production & Exploration Association (APPEA) Conference.

  • Exploring for the Future (EFTF) is a multiyear (2016–2024) initiative of the Australian Government, conducted by Geoscience Australia. This program aims to improve Australia’s desirability for industry investment in resource exploration of frontier regions across Australia. This paper will focus on the science impacts from the EFTF program in northern Australia derived from the acquisition and interpretation of seismic surveys, the drilling of the NDI Carrara 1 and also complementary scientific analysis and interpretation to determine the resource potential of the region. This work was undertaken in collaboration with the Northern Territory Geological Survey, the Queensland Geological Survey, AuScope and the MinEx CRC. These new data link the highly prospective resource rich areas of the McArthur Basin and Mt Isa Province via a continuous seismic traverse across central northern Australia. The Exploring for the Future program aims to further de-risk exploration within greenfield regions and position northern Australia for future exploration investment. [Carr] The Sherbrook Supersequence is the youngest of four Cretaceous supersequences in the Otway Basin and was deposited during a phase of crustal extension. This presentation shows how a basin-scale gross depositional environment (GDE) map for the Sherbrook SS was constructed, the significance of the map for the Austral 3 petroleum system, and why GDE mapping is important for pre-competitive basin studies at Geoscience Australia. [Abbott]

  • Brumbys 1 was an appraisal well drilled and cored through Brumbys Fault at the CO2CRC Otway International Test Centre in 2018. The Otway Project is located in South West Victoria, on private farming property approximately 35 km southeast of Warrnambool and approximately 10 km northwest of the town of Peterborough. Total measured depth was 126.6 m (80 degrees). Sonic drilling enabled excellent core recovery and the borehole was completed as a groundwater monitoring well. Brumbys 1 cores through the upper Hesse Clay, Port Campbell Limestone and extends into the Gellibrand Marl. This dataset compiles the extensive analysis undertaken on the core. Analysis includes: Core log; Foram Analysis; Paleodepth; % Carbonate (CaCO3); X-Ray Fluorescence Spectrometry (XRF); Inductively Coupled Plasma Mass Spectrometry (ICP-MS); X-Ray Diffraction (XRD); Grain Size; Density; Surface Area Analysis (SAA); Gamma. Samples were taken at approximately 1-2 m intervals.

  • In association with the OB2020 seismic survey, over 8,200 line kilometre of gravity and magnetic data were acquired. These data were subsequently merged with existing satellite data to produce merged grids at 1000m grid cell size. Several enhancement processing techniques were applied to these magnetic and gravity data to better highlight buried features within the Otway Basin. The merged input data from the survey and the enhanced products in this release provide valuable information on the geometry and spatial extent of igneous rocks in the deep-water basin. The distribution of these rocks is critical to the understanding of the petroleum systems and therefore the hydrocarbon prospectivity of the area. This data package contains: 1) A metadata statement document 2) Shapefiles of the magnetic and gravity line data from the OBSP survey 3) ASCII xyz grids of the OBSP and merged grids with public domain data 4) Georeferenced (GeoTIFF) images of the survey and merged grids 5) Gravity and Magnetic data processing reports from the OBSP survey

  • <div>Exploring for the Future (EFTF) is a program dedicated to exploring Australia’s resource potential and boosting investment. This program is designed to produce pre-competitive information to assist with the evaluation of the hydrocarbon resource potential of onshore basins and attract exploration investment to Australia. This record presents geochemical analyses of natural gases sampled from Nangwarry 1, located in the onshore Otway Basin, undertaken in partnership with the Department for Energy and Mining – Energy Resources, Government of South Australia, as part of the EFTF program Natural Hydrogen module. The Nangwarry Joint Venture drilled Nangwarry 1 to investigate the potential for the development of food grade, carbon dioxide production from this well. The results of the molecular and stable carbon and hydrogen isotopic analyses undertaken by Geoscience Australia are released in this report. The molecular data show that the gas composition in this well has an average of 96 mol% CO2 with an isotopic signature indicative of a magmatic origin, being comparable with previously produced gases from onshore Otway Basin wells (e.g. Boggy Creek 1, Caroline 1) for use by the food industry. The carbon and hydrogen isotopic composition of the C1–C5 hydrocarbon gases from Nangwarry 1 are suggestive of a source from within the Crayfish Supersequence.</div>

  • Geoscience Australia has undertaken a regional seismic mapping study that extends into the frontier deep-water region of the offshore Otway Basin. This work builds on seismic mapping and petroleum systems modelling published in the 2021 Otway Basin Regional Study. Seismic interpretation spans over 18 000 line-km of new and reprocessed data collected in the 2020 Otway Basin seismic program and over 40 000 line-km of legacy 2D seismic data. Fault mapping has resulted in refinement and reinterpretation of regional structural elements, particularly in the deep-water areas. Structure surfaces and isochron maps highlight Shipwreck (Turonian–Santonian) and Sherbrook (Campanian–Maastrichtian) supersequence depocentres across the deep-water part of the basin.

  • <div>The Sherbrook Supersequence (Campanian–Maastrichtian) is the youngest of four Cretaceous supersequences in the Otway Basin and was deposited during a phase of crustal extension. Supersequence thickness is typically less than 1000 ms TWT across the inboard platform. Beyond the platform edge up to 2 800 ms TWT of Sherbrook sediments were deposited in the deep-water Morum and Nelson sub-basins. Analysis of wireline-logs and cores from wells yielded fluvial, deltaic, coastal shelf gross depositional environments (GDEs). As the number of regionally mappable seismic facies is much less than the number of well-based GDEs, the integration of well-based environmental interpretations with seismic facies resulted in three main regional GDE (RGDE); Fluvial Plain, Coastal/Delta Plain, and Shelf. The Fluvial Plain and Coastal/Deltaic RGDEs are almost entirely restricted to the inboard platform areas of the basin. The mud-prone Shelf RGDE is widespread across the deep-water part of the basin where it forms the depocentres of the Morum and Nelson sub-basins. The Shelf RGDE is well imaged on the Otway 2020 2D seismic data that was acquired over the deep-water Otway Basin. In the Morum Sub-basin, the Shelf RGDE is strongly influenced by growth on extensional faults. In contrast, the Shelf RGDE in the Nelson Sub-bsin is a relatively unstructured progradational complex. The presence of mass-transport and incision complexes are consistent with active tectonism during Sherbrook deposition. Reservoir rocks in the deep-water basin are best developed in the Coastal/Deltaic RGDE where it encroaches into the Morum Sub-basin, and where the Austral 3 petroleum system was potentially active within the Sherbrook Supersequence.&nbsp;</div> This presentation was given at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March, Brisbane (https://2023.aegc.com.au/)

  • <div>Gas production from the Inner Otway Basin commenced in the early 2000s but the deep-water part of this basin remains an exploration frontier. Historically, the understanding of plays in this region were largely model driven and therefore the ground-truthing of depositional environments (DE) and gross depositional environments (GDE) are critical. This aspect has been investigated for the Sherbrook Supersequence (SS) by the integration of legacy wireline and core data, with regional 2D seismic facies mapping of new and reprocessed data from Geoscience Australia’s 2020 Otway Basin seismic program. Core observations were matched to wireline logs and seismic facies with resulting well based DE interpretations calibrated to seismic resolution Regional GDE intervals. Integration of well and seismic observations lead to the compilation of a basin-wide Regional GDE map for the Sherbrook SS. This GDE map indicates the distribution of Sherbrook SS play elements such as source rock, seal and reservoir, especially across the Deep Water Otway Basin where well data is sparse.</div> Published in The APPEA Journal 2023. <b>Citation:</b> Cubitt Chris, Abbott Steve, Bernardel George, Gunning Merrie-Ellen, Nguyen Duy, Nicholson Chris, Stoate Alan (2023) Cretaceous depositional environment interpretation of offshore Otway Basin cores and wireline logs; application to the generation of basin-scale gross depositional environment maps. <i>The APPEA Journal</i><b> 63</b>, S215-S220. https://doi.org/10.1071/AJ22090

  • The Otway Basin is a broadly northwest-southeast trending basin and forms part of a rift system that developed along Australia’s southern margin. It represents an established hydrocarbon province with mostly onshore and shallow-water offshore discoveries. However, the outboard deep-water Otway Basin, with water depths up to 6300 m, is comparatively underexplored and can be considered a frontier area. Following the completion of a basin-wide seismic depth-imaging program (Part 1; Lee et al 2021) and insights from the revised seismic interpretation (Part 2; Karvelas et al. 2021), we have developed a comprehensive petroleum system modelling (PSM) study by integrating these data and findings (Part 3). Together the studies have resulted in an improved understanding of the hydrocarbon prospectivity of the deep-water areas of the basin. Given the sparsity of data outboard, almost all legacy petroleum system modelling studies have been focused either on the onshore or shallow-water areas of the basin and primarily on their thick Lower Cretaceous depocentres. The limitations of legacy seismic datasets resulted in a high degree of uncertainty in the derivative interpretations used as input into PSM studies. In addition, the paucity and poor quality of data in the deep-water area reduced confidence in the understanding of the basin evolution and spatial distribution of depositional environments through time. The newly acquired 2D seismic survey and reprocessed legacy data, with calibration via several wells across the basin, has improved confidence in our understanding of the tectonostratigraphic evolution of the basin (Part 2; Karvelas et al. 2021). The study presented herein integrates products from the work in Part 2 into a petroleum system model with the primary objective being to better understand the petroleum systems across the deep-water Otway Basin.

  • Reports of bitumen stranding on the ocean beaches of southern Australia date back to the early days of European settlement. Previous investigations have shown that this ‘coastal bitumen’ comprises three categories of stranded petroleum: waxy bitumen, asphaltite and oil slicks. All three varieties are physically and chemically distinct from each other, and bear no geochemical resemblance to any indigenous Australian crude oil. This study focuses on the most common variety, waxy bitumen, which accounted for 90% of the strandings on six South Australian beaches repeatedly surveyed during 1991–1992. Geochemical analysis of 96 individual specimens collected from these survey sites and other beaches in South Australia and western Victoria has shown them to be variously weathered high-wax crude oils of paraffinic to aromatic-intermediate bulk composition. Elemental, isotopic and biomarker differences allow their assignment to at least five oil families with inferred source facies that range from deep freshwater lacustrine through paludal and deltaic to euxinic marine, possibly deposited within different sedimentary basins. Family 1, 2 and 3 waxy bitumens all contain biomarkers derived from the freshwater alga Botryococcus sp. and tropical angiosperms (notably dipterocarps). Similar biomarker assemblages are unknown in Australian sedimentary basins but are common in Cenozoic crude oils and source rocks throughout western Indonesia. Family 4 waxy bitumens lack these biomarkers, but do contain dinosterane and 24-n-propylcholestane, indicative of a marine source affinity, while the carbon isotopic signatures and high pristane/phytane (Pr/Ph) ratios of Family 5 waxy bitumens are consistent with their origin from coal-rich source rocks deposited in fluvial to deltaic sedimentary successions. The majority of these waxy bitumens represent an oceanic influx of non-indigenous, Southeast Asian crude oils carried into the waters of southern Australia by the Leeuwin Current. Although they are likely to originate from natural seepage within the Indonesian Archipelago, it is unknown whether the parent oils emanate from submarine seeps or from inland seepages which are then carried to the sea by rivers. The common practice of tanker cleaning operations in the Java and Banda seas may augment the supply of natural bitumen to the beaches of Australia.